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ABSTRACT
Activation of cytokine receptor‐associated Janus kinases (JAKs) mediates most, if not all, of the cellular responses to peptide hormones and
cytokines. Consequently, JAKs play a paramount role in homeostasis and immunity. Members of this family of tyrosine kinases control the
cytokine/hormone‐induced alterations in cell gene expression program. This function is largely mediated through an ability to signal toward
activation of the signal transducer and activator of transcription proteins (STAT), as well as toward some other pathways. Importantly, JAKs are
also instrumental in tightly controlling the expression of associated cytokine and hormone receptors, and, accordingly, in regulating the cell
sensitivity to these cytokines and hormones. This review highlights the enzymatic and non‐enzymatic mechanisms of this regulation and
discusses the importance of the ambidextrous nature of JAK as a key signaling node that integrates the combining functions of forward signaling
and eliminative signaling. Attention to the latter aspect of JAK function may contribute to emancipating our approaches to the pharmacological
modulation of JAKs. J. Cell. Biochem. 115: 8–16, 2014. � 2013 Wiley Periodicals, Inc.
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Members of the Janus kinases (JAKs) family play a key role in
immunity and hormone signaling. These kinases0 function is

instrumental in numerous important physiological processes. Tight
regulation of JAK‐dependent mechanisms is therefore essential for
homeostatic integrity of many tissues, as well as for their ability to
cope with environmental challenges. Both loss and abnormal increase
in JAK activity is often responsible for diverse diseases (reviewed in
Costa‐Pereira et al. [2011], Kerr et al. [2003], and Stark and Darnell
[2012]). Accordingly, tremendous medical significance of JAK is
reflected by a growing number of research programs developed to
identify and characterize pharmacologic agents that target these
kinases [Wilks, 2008].

Tight association of JAKs with cognate cytokine receptors plays a
key role in the mechanism of their activation and functions. This
characteristic also positions JAKs as a unique group of protein kinases
that, at least initially anchored to the cell membrane (unlike cytosolic
and nuclear tyrosine kinases, such as Src and Abl), yet do not have
their own transmembrane domain for the membrane recruitment
(unlike the receptor tyrosine kinases such as epidermal growth factor
receptor). Four members of this family of tyrosine kinase (JAK1,
JAK2, TYK2, and JAK3) have been discovered and extensively
characterized [Wagner and Schmidt, 2011]. All these proteins harbor

several common protein domains. The interaction of JAKs with the
intracellular domain of diverse cytokine receptors is mediated by the
four‐point‐one, ezrin, radixin, and moesin (FERM) domain. Addi-
tional common motifs include the Src homology domain 2, the
pseudokinase domain (initially considered to mediate the serine/
threonine kinase activity), and the tyrosine kinase domain (reviewed
in Costa‐Pereira et al. [2011], Kerr et al. [2003], Stark and Darnell
[2012], and Strobl et al. [2011]). JAKs are often co‐translated and
subsequently largely remain tightly associated with intracellular
domains of the cytokine receptors. This association per se might play
an important role in receptor trafficking, presence on the cell surface
and function. Specific examples of such regulation are outlined in the
subsequent sections.

JAK AT THE CROSS‐ROADS OF CYTOKINE
SIGNALING

Activation of JAK represents the most proximal and often essential
step in the signaling elicited by a given cytokine (Fig. 1). JAK activity
is required for majority of events that occur upon cytokine receptor
activation. A few notable exceptions (often limited to a particular
tissue or cell type) include JAK activity‐independent activation of
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mitogen‐activated protein kinase by erythropoietin in vascular
smooth muscle cells [Ammarguellat et al., 2001], activation of this
kinase as well as of Src by prolactin [Sakamoto et al., 2007],
stimulation of the recruitment of protein kinase D2 (PKD2) to the
interferon receptor [Zheng et al., 2011a], induction of CCL20
chemokine expression by interleukin (IL)‐17 [Kao et al., 2005], and
others.

Most of the “forward” signaling, by which JAK enables the effects
of the cytokines functions, is mediated via tyrosine phosphorylation
and ensuing activation of the signal transducer and activator of
transcription proteins (STAT). However, diverse STAT‐independent
effects of JAK activation include phosphorylation and cross‐
activation of unrelated signaling (e.g., insulin receptor substrate
[Wang et al., 1997]) and activation of additional signaling branches
dependent on unrelated kinases (such as PI3K [Kaur et al., 2005], p38
kinase [Katsoulidis et al., 2005], and others) are documented in the
literature. Given how many excellent reviews have been dedicated to
the “forward” signaling via JAK, we decided not to focus on this topic
in this review.

Instead, we wish to highlight and discuss the eliminative functions
of JAKs, that is, the role of these kinases in rapid and irreversible
downregulation of cytokine receptors that limits the ability of a cell to
respond to the subsequent encounters with a given cytokine (Fig. 1)
[HuangFu and Fuchs, 2010; Fuchs, 2012, 2013]. Here we provide
specific examples as per how the JAK‐activating cytokines (e.g., type
1 interferons) or hormones (e.g., growth hormone) utilize the
activation of JAK for decreasing receptor levels and terminating
the signal. These examples suggest that JAK activation represents an
important step in eliminating the cognate receptors and in ensuing
restriction of the magnitude and duration of cytokine‐elicited effects.

JAK: THE JANUS KINASE, AFTER ALL…

Historical excurse into JAKs naming and characterization is
abundant on irony [Stark and Darnell, 2012]. Being convinced of
importance of tyrosine kinases in diverse biological function, Andrew
Wilks carried out a series of elegant, daring, and largely successful
studies to identify the novel members of this family. Two of cloned
genes were named Just Another Kinase (JAK1 and JAK2). Being fond
of the abbreviation JAK and having noticed a putative serine/
threonine kinase motif in addition to a characteristic tyrosine kinase
domain, Wilks proposed that JAK may have both tyrosine and serine/
threonine kinase activities. Understandable analogy with a two‐faced
Roman god Janus shaped the acronym “JAK” to be representative of
Janus kinase [Wilks and Oates, 1996; Wilks, 2008].

Years of subsequent biochemical characterization carried out by
many investigators (regrettably, too many for each to be properly
cited within the space constraints) convincingly demonstrated that all
four members of JAK family do not possess an appreciable serine/
threonine kinase activity. Yet, the name persisted, and, as we hope to
demonstrate in the following section, for a very good reason. Indeed,
Janus is the God of Gates and Doors; conversely, JAKs as signaling
mediators are functioning right at the gateway of cytokine signaling
(Fig. 1). Janus, the God of beginnings and endings, has two faces to
simultaneously look to the future and the past. Very appropriate of
this allegory, JAKs mediate both positive (STAT activation) and
negative regulatory (receptor downregulation) events elicited by
cytokines and hormones. Therefore, JAKs should be considered the
true Janus kinases in their ability to shape both the starting
the cytokine signaling and terminating it by elimination of cytokine
receptors and desensitization of the cell to additional ligand exposure
(Fig. 1).

ROLE OF JAK IN ELIMINATIVE SIGNALING BY
SPECIFIC RECEPTORS

TYPE 1 INTERFERON RECEPTOR
This receptor is composed by two diverse chains: IFNAR1 associated
with TYK2 and IFNAR2 associated with JAK1 (reviewed in Uze et al.
[2007]). Maintenance of the basal levels of IFNAR1 on cell surface in
human cells directly depends on its association with TYK2 [Gauzzi
et al., 1997], which impedes its ligand‐independent constitutive
endocytosis [Ragimbeau et al., 2001, 2003; Payelle‐Brogard and
Pellegrini, 2010]. When bound to IFNAR1, this kinase masks the
linear endocytic motif [Kumar et al., 2008], whose exposure to the
cellular endocytic machinery could be further regulated by tyrosine
phosphorylation and activity of protein tyrosine phosphatase PTP1B
[Carbone et al., 2012]. Mouse IFNAR1 contains a different endocytic
motif; as a result, the plasma membrane levels of mouse IFNAR1 do
not depend on either TYK2 status [Karaghiosoff et al., 2000] or PTP1B
activities [Carbone et al., 2012].

Downregulation of the entire receptor is driven by unmasking of
IFNAR1 endocytic motifs mediated by the phosphorylation‐depen-
dent ubiquitination of IFNAR1 [Kumar et al., 2003, 2004]. This
ubiquitination facilitated by the b‐Trcp E3 ubiquitin ligase accel-
erates receptor internalization and stimulates its post‐internalization
trafficking toward the lysosomal degradation [Kumar et al., 2007].

Fig. 1. Interaction of a cytokine ligand with the extracellular domains of its
cognate receptor initiates the cytokine signaling. Common elements of this
signaling (“stem signaling”) are represented by the activation of JAKs resulting
in their own phosphorylation. Activated JAKs then signal “forward” to
phosphorylate the intracellular domains of the receptor and recruited STAT
proteins that become activated and alter the transcriptional program of a
cytokine‐exposed cell. Concurrently, the “eliminative” signaling mediated by
JAKs promotes downregulation of associated receptors often coupled with their
proteolytic degradation via lysosomal or/and proteasomal pathway.

JOURNAL OF CELLULAR BIOCHEMISTRY ELIMINATIVE SIGNALING BY JANUS KINASES 9



The recruitment of b‐Trcp to IFNAR1 relies on IFNAR1 phosphoryla-
tion on serine residues within a specific phospho‐degron [Kumar
et al., 2004]. This phosphorylation (and ensuing IFNAR1 ubiquiti-
nation, endocytosis, and degradation) could be mediate by cross‐
eliminative stimuli that do not require JAK activity [Liu et al., 2008,
2009a]. These stimuli include tobacco smoking products [HuangFu
et al., 2008], non‐ligand cytokines and growth factors [HuangFu
et al., 2010, 2012; Zheng et al., 2011b], pathogens [Qian et al., 2011],
activity of oncogenic proteins [Bhattacharya et al., 2011b], and stress
conditions [Liu et al., 2009b; Bhattacharya et al., 2010, 2011a, 2012].

Nevertheless, the ligands (i.e., type 1 interferons) elicit a different
specific pathway leading to the downregulation of IFNAR1. This
pathway is largely dependent on activities of TYK2 and JAK1
[Marijanovic et al., 2006; Liu et al., 2008]. Activated JAKs signal
toward IFNAR1 downregulation via stimulating the recruitment of
b‐Trcp as a result of increased serine phosphorylation within
the IFNAR1 phospho‐degron [Kumar et al., 2004; Marijanovic
et al., 2006]. As neither TYK2 nor JAK1 possess the serine kinase
activities, their effect is indirect. In the interferon‐stimulated cells,
another kinase—PKD2—is recruited to IFNAR1. This kinase becomes
activated as a result of JAK‐mediated tyrosine phosphorylation
within the plekstrin homology domain of PKD2 [Zheng et al., 2011a].
As a result, activated PKD2 phosphorylates the serines within IFNAR1
degron, stimulates the recruitment of b‐Trcp and ensuing ubiquiti-
nation and degradation of IFNAR1 as well as attenuation of cellular
responses to type 1 interferons [Zheng et al., 2011c].

ERYTHROPOIETIN RECEPTOR
Erythropoietin activates its homodimeric JAK2‐associated receptor
(EpoR) to and promote erythropoiesis and elicit other important
physiological effects, such as regulating renal function and plasma
volume, angiogenesis, and cognitive effects, etc. (reviewed in
Constantinescu et al. [1999]). Post‐translational mechanisms domi-
nate the regulation of the cell surface EpoR levels [Sinclair
et al., 2008], the latter determine responsiveness of cells to
Erythropoietin. Since the first demonstration of an essential role of
associated JAK2 in erythropoietin‐induced signaling and transcrip-
tional activation [Witthuhn et al., 1993], important studies gained
the insight into the relationship between EpoR and JAK2 and their
mutual regulation. Although early results were suggestive that ligand
promotes the interaction between these two proteins [Miura
et al., 1994], subsequent work strongly supports the notion that
JAK2 is already associated with EpoR in naïve cells. Evidence for the
latter paradigm include demonstrated ability of JAK2 to phosphory-
late immature EpoR in the endoplasmic reticulum [Cohen et al., 1997]
and important role of associated JAK2 in delivering the de novo
synthesized EpoR to the cell surface [Huang et al., 2001].

EpoR homodimers are pre‐formed prior to their interaction with
the ligands [Livnah et al., 1999; Constantinescu et al., 2001]; the latter
trigger activation via inducing a conformational change leading to
JAK2 activation [Remy et al., 1999]. This dimerization is required
even for enhanced signaling mediated by a constitutively active
JAK2V617F oncogene found in patients with diverse myeloprolifera-
tive diseases and present in almost all patients with polycythemia
vera [Lu et al., 2008]; accordingly, the integrity of the FERM domain
in this mutant is essential for its high intrinsic activity [Wernig

et al., 2008]. It would be expected that the latter activity should
promote receptor elimination. Indeed, EpoR expression is reduced on
early erythroblasts in mice expressing constitutively active
JAK2V617F [Bumm et al., 2006].

Inactivation of EpoR‐associated JAK2 and ensuing termination of
erythropoietin‐induced signaling is attributed to the effects of
tyrosine protein phosphatases, including SH‐PTP1 [Klingmuller
et al., 1995] and PTP1B [Cohen et al., 2004], as well of SOCS proteins
that could target JAK2 and/or its association with the receptor [Sasaki
et al., 2000]. Other regulators such as Spry1 [Sathyanarayana
et al., 2012] or an adaptor protein Lnk also function as negative
regulators of JAK2 signaling and downstream effects of erythropoie-
tin [Tong et al., 2005]. It remains to be seen whether these
mechanisms directly participate in regulating the EpoR turnover.

A C‐terminal truncation in EpoR found in patients with primary
familial and congenital polycythemia has been reported [Furukawa
et al., 1997; Arcasoy et al., 1999; Watowich et al., 1999; Forget
et al., 2000]. This alteration results in an impaired downregulation of
EpoR [Sulahian et al., 2009] and sustained JAK2 activation and
signaling [Furukawa et al., 1997; Arcasoy et al., 1999; Watowich
et al., 1999; Forget et al., 2000]. Given that this mutant lacks the
phospho‐degron motif needed for the recruitment of b‐Trcp E3
ubiquitin ligase, which has been shown to play a key role in EpoR
downregulation and degradation [Meyer et al., 2007], it is plausible
that sustained activation of JAK2 results from dissociation of its
ability to signal forward from JAK2‐mediated elimination of EpoR
[Verdier et al., 2000; Walrafen et al., 2005]. A dominant nature of this
mutation has been reported [Watowich et al., 1999] suggesting that
the loss of degron (along with the loss of distal tyrosine residues
[Arcasoy and Karayal, 2005] implicated in recruitment of PI3K
elements [Sulahian et al., 2009]) renders this receptor constitutively
active.

In line with this possibility, JAK‐stimulated ubiquitination of EpoR
by b‐Trcp may stimulate elimination of receptor via diverse
mechanisms including involvement of lysosomal and proteasomal
activities [Verdier et al., 2000; Walrafen et al., 2005]. Ubiquitination
of EpoR plays a key role not only in receptor elimination but also in its
signaling [Bulut et al., 2011]. Whereas a central role of b‐Trcp E3 in
the elimination of EpoR has been firmly established [Meyer
et al., 2007], a potential role of other ubiquitin ligases such as
p33RUL cannot be ruled out [Friedman et al., 2003]. The role of JAK2
in the function of these ligases remains to be elucidated.

THROMBOPOIETIN RECEPTOR
Thrombopoietin receptor (TpoR) is capable of activating both JAK2
and TYK2. This activation in response to the ligand plays a key role in
the differentiation of megakaryocytes, formation of platelets, and
renewal of the hematopoietic stem cells (reviewed in Kaushansky
[2009]). Association of TpoR with both JAK2 and TYK2 ensures a
proper plasma membrane localization of the receptor in the absence
of the ligand. Whereas, unlike for EpoR, a large fraction of the TpoR is
processed to the mature Endo H‐resistant form and reaches the cell
surface even in the absence of JAK2, this association stabilizes the
mature form of the receptors and protects it from internalization and
other modes of degradation that may involve proteasomal activity
[Royer et al., 2005; Tong et al., 2006].
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TpoR is known to be downregulated in cells exposed to the ligand
[Sato et al., 1998]. TpoR‐dependent activation of JAK2 and TYK2
within the context of thrombopoietin signaling is negatively
regulated by the presence of a unique amphipathic motif at the
junction between the transmembrane and cytoplasmic domains
[Staerk et al., 2006]. Either the role of this domain in receptor stability
or the function of JAK2 and TYK2 in the ligand remains to be
determined. However, consistent with a hypothesis that JAKs
contribute to TpoR elimination, this receptor is robustly down-
regulated in cells that harbor constitutively active JAK2V617F

[Pecquet et al., 2012]. Constitutively active mutant forms of TpoR
have been reported in some myeloproliferative neoplasms [Kota
et al., 2008; Marty et al., 2009], the exact effect of these mutations on
the rate of receptor downregulation remains to be elucidated.

GROWTH HORMONE RECEPTOR
Growth hormone receptor (GHR) is tightly associated with JAK2 and
relies on JAK2 for mediating most, if not all, of its signaling pathways
(reviewed in Frank [2002] and Frank and Fuchs [2008]). Association
of the GHR with JAK2 ensure proper GHRmaturation [He et al., 2003,
2005] and plays a paramount role in enabling the trafficking of de
novo synthesized receptor to the cell surface [He et al., 2005; Loesch
et al., 2007]. The fate of already matured GHR is also influenced by
JAK2 interaction given that the proteolytic turnover rate for this
receptor is grossly accelerated in cells lacking JAK2 even in the
absence of the ligand [He et al., 2005]. Studies that examined the role
of catalytically active JAK2 in the ligand‐inducible ubiquitination,
endocytosis, and degradation of GHR so far paint a rather
complicated scenario. GHR is ubiquitinated (and this ubiquitination
is stimulated by GHR), however, the role of ubiquitination per se in
GHR endocytosis has been disputed based on receptor truncation
analysis. Yet a role of several E3 ubiquitin ligases, including SOCS,
Triad1, CHIP, and b‐Trcp in GHR downregulation has been suggested
[Strous and Gent, 2002; Landsman and Waxman, 2005; van Kerkhof
et al., 2007, 2011; Hassink et al., 2012; Slotman et al., 2012]. JAK2
was proposed to negatively regulate ubiquitin‐mediated endocytosis
[Putters et al., 2011], however, numerous other studies using
pharmacological [Saito et al., 1994; Moulin et al., 2003] or molecular
approaches [Deng et al., 2007] strongly suggest that JAK2 activation
within the context of growth hormone signaling promotes down-
regulation of this receptor. Future studies aimed to tease apart
constitutive versus ligand‐inducible and ubiquitination‐driven
versus ubiquitination‐independent mechanisms should shed the
light on the role of JAK2 in elimination of GHR.

PROLACTIN RECEPTOR
Several forms of prolactin receptor (long, intermediate, DS1, and two
short forms) have been described in mammalian cells (reviewed in
Clevenger and Kline [2001] and Swaminathan et al. [2008a]). The pre‐
formed homodimer of the long form of this receptor is known to
mediate the entire plethora of signaling events triggered by prolactin
including the activation of associated JAK2 shown by several groups
to represent a key mediator of effects elicited by this hormone
[Dusanter‐Fourt et al., 1994; Rui et al., 1994]. This long form (known
to be stabilized in breast cancer cells [Li et al., 2006]) undergoes
constitutive phosphorylation‐dependent ubiquitination, endocytosis,

and lysosomal degradation that is dependent on the glycogen
synthase kinase 3b and b‐Trcp E3 ubiquitin ligase [Li et al., 2004;
Plotnikov et al., 2008, 2009].

Importantly, within the context of prolactin signaling, activation
of JAK2 (as well as Src) appears to further stimulate the degradation of
prolactin receptor. Among the mechanisms underlying this phenom-
enon are ubiquitination‐stimulated receptor internalization [Swami-
nathan et al., 2008b], trafficking of already internalized receptor into
the lysosomes [Varghese et al., 2008], and proteolytic processing of
the receptor at themembrane followed by proteasomal degradation of
the fragments [Lu et al., 2005; Piazza et al., 2009]. Intriguingly, a
recent possibility of JAK2‐mediated cross talk between prolactin and
growth hormone in the regulation of respective receptors has been
recently suggested [Xu et al., 2012].

Prolactin represents a major activator of JAK2 in mammary
glands. Unlike myeloproliferative diseases featuring constitutively
active JAK2 mutants, these types of aberrations are not found in
breast cancers. However, constitutively active variants of prolactin
receptor that mediate an augmented JAK2 activation in mammary
fibroadenomas have been recently identified [Bogorad et al., 2008;
Courtillot et al., 2010]. Relative susceptibility of these mutant
receptors to basal and ligand‐inducible downregulation remains to be
elucidated.

OTHER RECEPTORS
Stabilizing effects of JAK1 on cell surface levels of the oncostatin M
receptor [Radtke et al., 2002, 2006] and IL‐9Ra, and IL‐2Rb [Malka
et al., 2008] have been reported. Similar regulation by JAK3 was
proposed for the common g‐chain of IL‐2, IL‐4, IL‐7, IL‐9, IL‐15, and
IL‐21 receptor complexes [Hofmann et al., 2004]. The ligand‐
stimulated internalization and degradation of interleukin‐7 receptor‐
a has been demonstrated to depend on the activity of associated JAK3
in T cells [Henriques et al., 2010]. Whereas ubiquitination of the
interleukin‐10 receptor appears to be constitutive [Jiang et al., 2011],
an acceleration of its degradation was shown to be stimulated by the
ligand [Wei et al., 2006] suggesting at least some sort of involvement
for the JAK‐dependent stem signaling.

Gp130 is a common chain for many cytokine receptors such as IL‐6
(in combination with IL6R chain) or leukemia inhibitory factor
(reviewed in Silver and Hunter [2010]). Ligand treatment robustly
promotes downregulation of IL6R [Zohlnhofer et al., 1992]. IL6‐
induced activation of associated JAK2 precedes post‐translational
modification of gp130 followed by its internalization [Wang and
Fuller, 1994] that is dependent on a di‐leucine endocytic motif
[Dittrich et al., 1994, 1996; Doumanov et al., 2006]. A phosphoryla-
tion of a serine adjacent to this motif that stimulates its unmasking
and subsequent receptor downregulation and degradation can be
induced by diverse ligands that utilize gp130 as a component of their
receptor [Gibson et al., 2000; Blanchard et al., 2001]. This
phosphorylation is mediated by the MK2 kinase that could be
activated not only by a ligand (in a manner presumably dependent on
JAK activity), but also by numerous stress stimuli that could stimulate
MK2 in a JAK‐independent manner [Hideshima et al., 2003; Radtke
et al., 2010]. Accordingly, JAK activation was shown to be not
essential for overall gp130 internalization [Thiel et al., 1998a,b].
Given that other cytokines (e.g., interferon‐a [Anthes et al., 1995]) are
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capable of joining the plethora of stimuli that could cross‐eliminate
gp130, the experimental assessment of the role of JAK solely within
the context of the ligand‐dependent signaling appears problematic.

The common beta chain shared by the cognate receptors for
interleukin‐3, interleukin‐5, and the granulocyte‐macrophage colo-
ny‐stimulating factor was shown to be ubiquitinated, internalized,
and degraded in a manner dependent on activity of associated JAK2
[Martinez‐Moczygemba and Huston, 2001] and, perhaps, of JAK1
that is associated with the interleukin‐5‐specific alpha chain
[Martinez‐Moczygemba et al., 2007]. Similarly to the JAK‐inducible
IFNAR1 ubiquitination [Kumar et al., 2007], specific ubiquitin‐
acceptor sites appear to be responsible for the downregulation of
common chain induced by interleukin‐5 [Lei et al., 2011].

MEDICAL ASPECTS OF JAK‐MEDIATED
ELIMINATIVE SIGNALING

Given obvious medical importance of balancing activity of JAK in
cells, an intensive search for pharmacologic modulators of these
kinases is warranted [Wilks, 2008]. Both approaches to activate and to
inhibit JAKs are being considered. Use of hormones/cytokines to
stimulate JAK activities and ensuing “forward” signaling has been
obviously used within the context of the hormone/cytokine action.
Such therapeutic approaches include the use of growth hormone in
replacement therapy in deficient patients [Giannoulis et al., 2012], use
of erythropoietin to combat anemia [San Miguel and Garcia‐
Sanz, 1998] as well to protect kidney, liver, and neural tissues
from injury [Sargin et al., 2010; Moore et al., 2011], use of interferons
to treat cancers, chronic viral infections, and multiple sclerosis
[Borden et al., 2007; Fuchs, 2013], and many others. Conversely, the
inhibitors of JAKs are proposed to be used as immunosuppressants,
anti‐inflammatory, and anti‐cancer agents [Borie et al., 2004; Zhao
et al., 2005; O0Neill, 2006]. Ongoing clinical trials are examining the
efficacy of diverse JAK‐targeting agents against psoriasis [Kwatra
et al., 2012], rheumatoid arthritis [Cohen and Fleischmann, 2010;
Vaddi and Luchi, 2012], and myeloproliferative neoplasias [Stein
et al., 2011; Tefferi and Pardanani, 2011].

Understanding the eliminative aspect of JAK0s function adds
another dimension to the development and practical use of both
activators and inhibitors of these kinases within the context of diverse
pathologic conditions. Potential development of potent therapeutic
modalities aimed at the eliminative function of JAK might be
beneficial for various patient groups. Agents that could promote
dissociation of JAK from its cognate receptor may act to desensitize
the cell to a given cytokine/hormone and prevent its potentially
harmful effect. As both type 1 interferons and TYK2 play a key role in
augmenting the lethality during the septic shock [Karaghiosoff
et al., 2003], patients suffering from this condition could benefit from
agents that promote dissociation of TYK2 from IFNAR1 are expected
to inactivate TYK2 and promote the loss of IFNAR1 from the cell
surface.

Additional efforts could be expanded toward the agents or their
combination that may selectively target either “forward” or
“eliminative” signaling outcomes. For example, if inhibitors of the
constitutively JAK2V617F are combined with another agent that
maintains a high level of degradation of JAK2‐associated receptors,

the cumulative efficacy of treatment in patients with myeloprolifera-
tive diseases could be increased. Future progress in this area of
research may lead to development of novel and exciting therapeutic
approaches.
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